

LECTURE OUTLINE

- INTRODUCTION
- INITIAL PLANT GROWTH ANALYSIS
 - 'Classical' Approach
 - 'Functional' Approach
- EMPIRICAL MODELS
 - 1. Linear Model
 - 2. Exponential Model
 - 3. Power (Allometric) Model
 - 4. Polynomial Model
 - 5. Logarithmic Model

INTRODUCTION

What is an empirical model?

- Many problems in engineering and science involve exploring the relationships between two or more variables
- 2. For example, in a chemical process, suppose that the yield of the product is related to the process-operating temperature
- 3. An empirical model is based only on data and is used to predict, not to explain, a system
- 4. An empirical model consists of **a function** that captures **the trend of the data**

- These models can be used to develop relationships for forecasting and describing trends.
- These relationships and trends are not necessarily mechanistically relevant.
 - Source: EPA website, glossary of frequently used modeling terms.
- 6. Models are only useful if they help you solve problems.
- The best model, whether it is theoretical or empirical, is the model that predicts best for your situation

INTRODUCTION

- 6. Poorter and Lewis (1986) showed that the testing of differences in RGR had only limited biological meaning.
- 7. Wickens and Cheeseman (1988) argued that the functional approach is of limited value if plants are subjected to short-term environmental changes.
- 8. But even when plants are grown in a constant environment, the functional approach has some pitfalls.
- The main problem of the functional approach is the choice of the appropriate degree of the polynomial to fit the data

EMPIRICAL MODELS

- The analysis of plant growth with the empirical models (correlative or statistical models) is the use of available models to describe relationships among variables without referring to the correlated processes
- The empirical models are not derived from assumptions concerning the relationship between variables and they are not based on physical principles
- 2. The first step in deriving an empirical models is to get the scatter plot of the data.

- If the data does not seem to be linear, try to plot one or both variables (X & Y) as logarithms so that you can check if an exponential or power models are good fits.
- 4. The idea is to get a graph that looks reasonably linear and then to get a linear model
- 5. Models available in excel program that can be used directly are \rightarrow
 - a. Linear Model
 - b. Exponential Model
 - c. Power (Allometric) Model
 - d. Polynomial Model
 - e. Logarithmic Model

• In Linear model, y depends linearly on x

y = ax + b

- In Power model, In y depends linearly on ln x
 y = ax^b →ln y = ln a+b lnx
- In Exponential model, In y depends linearly on x
 y = ae^{bx} →ln y = ln a+bx
- In Logarithmic model, y depends linearly on ln x
 y = a ln(x) + b →x =e^[(y-b)/a]

No.	Why a certain thing happens (What is it)	How a system works
1.	A cup of hot coffee cools down with time $(why) \rightarrow Ok \& easy to do$	
2.	Air temperature under a leaf is lower than that at open space on sunny days \rightarrow OK & easy to do	
3.	Healthy leaves look green (why) \rightarrow OK, but not easy to do	
4.	Some fruits look yellow (why) \rightarrow OK, but not easy to do	
5.	The angle between a branch and stem seems smaller as the ratio of branch/stem diameter increases \rightarrow OK & easy to do	
6.	An egg cannot stand vertically \rightarrow OK & easy to do?	
7.	$s \rightarrow OK$ & easy to do	
8.	$s \rightarrow OK$ & easy to do	
9.	$s \rightarrow OK$ & easy to do	
10.	$s \rightarrow OK \& easy to do$	